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Abstract
The objective of this study was to examine the effect of transitions between daylight saving time (DST) and standard time
(ST) on traffic crashes in Florida. The study was conducted using 37 years of crash data from Florida from 1983 to 2019. The
analysis was based on crashes that occurred during the week before and the week following the time change. The paired
Wilcoxon rank test implemented using a Bayesian approach was used to compare the difference in crash frequency following
the clock shift to DST. The analysis showed that the time shift has a significant effect on traffic crashes. More specifically, the
beginning of DST in the spring, when the clock moves forward by one hour, was associated with a higher frequency of fatal
and nighttime crashes. The shift at the end of DST in the fall, when the clock moves back by one hour, resulted in a significant
increase in all, no injury, morning peak hours, afternoon off-peak hours, two-vehicle, and multiple-vehicle crashes. Crashes
during evening peak hours decreased in the week immediately following the time change. These findings were particularly sig-
nificant on the Sunday when the shift occurred and the following Monday and Tuesday. It can be inferred from these findings
that the impact of DST on safety may be attributed to the disruption of circadian rhythms as well as to the one-hour loss in
the spring and one-hour gain in the fall. The study findings could assist researchers and practitioners in understanding the
impacts of DSTon roadway safety.
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When it comes to daylight saving time (DST), most peo-
ple remember the phrase, ‘‘spring forward and fall back.’’
This simple phrase saves people from getting to work
too early or too late when the time changes occur in the
spring and fall. The United States first adopted this prac-
tice as an energy-saving measure during World War I.
Eventually, it was officially enacted by Congress through
the Uniform Time Act in 1966. DST started to be imple-
mented from April to October. In 1986, the use of DST
was extended to seven months and later extended to
eight months in 2005 (1). Since 2007, DST has been
applied each year at 2 a.m. on the second Sunday of
March during ‘‘spring’’ and requires moving the clock
‘‘forward’’ by one hour. Next, at 2 a.m. on the first
Sunday of November during ‘‘fall,’’ the clock is moved
‘‘back’’ one hour.

The adjustment of standard time (ST) forward or
backward delays sunrise and sunset time for one hour in
the spring, summer, and early fall (2). Thus, people have

one more hour of daylight in the evening and one less
hour of daylight in the morning. In the spring, the transi-
tion from ST to DST does not just represent fewer day-
light hours in the morning; it represents a shortening of
people’s regular sleeping time since the clock is moved
one hour forward. This shortened sleeping time may dis-
rupt the human circadian cycle, that is, the internal bio-
logical clock (3, 4). Furthermore, it is considered that a
one-hour shift in the clock may have short-term detri-
mental effects on alertness and performance that could
contribute to traffic crashes.
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Previous researchers have attempted to find a relation-
ship between DST and traffic crashes. The results have
been mixed. Some results reported the positive effects of
DST on traffic safety (5, 6), and others correlated an
increase in crashes with DST (4, 7, 8). Considering past
studies’ limitations, this study examined the effect of
DST and ST transitions on traffic crashes in Florida. The
short-term impact of getting in and out of DST in the
spring and fall for each day of the week before and after
DST was explored. Crashes that occurred on Florida
roadways for 37 years from 1983 to 2019 were analyzed
based on crash severity, time of day, and the number of
vehicles involved in a crash.

In this research, a Bayesian hypothesis test was con-
ducted to determine if the frequency of crashes before and
after the clock change into and out of DST is credibly dif-
ferent at the 90% highest density interval (HDI). This
interval summarizes the values such that the points inside
the interval have higher posterior density than points out-
side the interval (9). In this context, the uncertainty in a dis-
crete decision with regard to a null hypothesis is integrated.

Previous Studies

Table 1 summarizes the main findings of studies that
explored the effect of daylight saving on driver behavior
and crash frequency. As indicated in Table 1, previous
studies observed a correlation between DST and traffic
safety. While some studies associated DST with the
increase in crashes, others concluded that DST improves
safety. Previous studies have identified different patterns
in the spring and the fall. Several studies have documen-
ted an increase in the crash frequency in the spring.
However, researchers have presented mixed results in the
fall. A few studies concluded that crashes increased in
the fall, while others found a decrease in the crash fre-
quency in the DST transition during fall.

Studies have also found a pattern related to the decline
in vehicle crashes within the time periods in which day-
light was extended because of DST. These observations
are consistent with a previous study that conducted a sys-
tematic review of studies that examined the impact of
DST on crash risk (20).

Most of the previous studies on this topic have several
weaknesses, among the most common of which is the
lack of a sufficiently large data set. Most previous studies
that used vehicle crash data have analyzed no more than
12 years of data. Some studies addressed this issue by
using non-traditional data sources such as the data from
insurance agencies and health care facilities. Even though
these data sets are huge, they do not include crucial
crash-related information.

This study extends previous work in this area by
examining the safety effects of DST on the number of

crashes based on severity, time of day, and the number
of vehicles involved in the crash. The analysis is based on
the crash data from 1983 to 2019. Using such a large
data set helps find patterns for several different crash
scenarios in the same region. Based on previous research,
the hypothesis is that transitions to DST and ST affect
crash frequency.

Data Collection

As shown in Table 2, crash data for one week before and
one week after DST changes were obtained for the
37 years from 1983 to 2019. These data were obtained
from two crash data sources in Florida, that is, the
Crash Analysis Reporting System (CARS) and Signal
Four Analytics. CARS is a database maintained by the
Florida Department of Transportation (FDOT) State
Safety Office. Signal Four Analytics is a web-based geos-
patial crash analytical tool developed and hosted by the
GeoPlan Center at the University of Florida that pro-
vides crash data with numerous crash attributes. The
compiled crash data set has one record for each crash. It
contains comprehensive information about the crash,
such as date and time, location, crash severity, and the
number of vehicles involved.

Statistical Analysis

The impact of DST on crash frequency was explored
using the number of crashes for each day of the weeks
before and after DST transitions. The crash groups were
categorized based on all crashes, crash severity, time of
day, and the number of vehicles involved in a crash. The
categories of crashes based on severity included no
injury, injury, and fatality. Considering the time of day,
the crashes were categorized into morning peak period
(7 a.m to 9 a.m.), afternoon off-peak period (10 a.m. to
2 p.m.), evening peak period (3 a.m. to 7 p.m.), and night-
time period (8 p.m. to 6 a.m.). Three categories of crash
were considered based on the number of vehicles, that is,
single-vehicle, two-vehicle, and multiple-vehicle crashes.
Overall, 154 crash categories, that is, 11 categories for
each day of the week, multiplied by seven days of the
week, multiplied by two seasons of the year (spring and
fall), were used to implement the study objective.

Boxplots were used to describe the crash data for each
scenario and to determine the skewness of the data. This
was an important step because the statistical test selection
depended on whether the data were normally distributed.
It was found that the data were skewed and thus not nor-
mally distributed for all the scenarios considered in the
study.

A paired sample Wilcoxon rank test was used to com-
pare crash frequency before and after DST, considering
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the asymmetric nature of the crash data. The Wilcoxon
rank test was used because it is a nonparametric test that
does not assume that the data are normally distributed.
Besides, this test is more robust against outliers because
it transforms the data to their ranks. The means of the
two samples can thus be compared by the relative sizes
of their data points without reference to their absolute
magnitudes.

The null hypothesis for the paired sample Wilcoxon
rank test is that the medians of the paired crash counts
before and after DST are equal. The paired sample
Wilcoxon signed rank test operates first by taking the dif-
ferences between the two samples as shown in Equation
1, and then assigning ranks to these differences r d.

d = crash count Monday before DST�
crash count Monday after DST ð1Þ

Depending on whether the respective value of d is posi-
tive or negative, the r d is assigned a positive or negative
sign, and the sum of these signed ranks is computed.
Under the null hypothesis, the sum of the signed ranks is
expected to be zero. In this study, the alternative hypoth-
esis was framed to be that the number of crashes before
and after DST are credibly different.

In this study, the Wilcoxon rank test was implemented
using a Bayesian rather than a frequentist approach. In a
frequentist framework, hypothesis testing is performed
distinct from other forms of inference, such as parameter
estimation (21). The comparability of the observed data
with a given hypothesis on model parameters is assessed
without regard to which model parameter best fits the
given data.

The paired Wilcoxon rank test was implemented using
the bayesWilcoxTest, an R open-source package (22).
The data were first transformed using the inverse-normal
rank to quantiles of a standard Gaussian in this package.
This process allowed modeling of the transformed data
as a Gaussian distribution via Bayesian methods with
uninformative priors. The resulting posterior distribution
can be interpreted similarly to the classical hypothesis
test but provides more detailed information and has a
more straightforward interpretation (21, 22). From a
Bayesian perspective, parameter estimates and hypoth-
esis tests on parameters both involve the same estimation
procedure. The outcome of the Bayesian model estima-
tion is a full probability distribution of the parameters in
question, that is, the posterior distribution. This poster-
ior distribution can be employed directly to test hypoth-
eses on the parameters at hand. The resulting posterior
distributions for the parameter of both groups give the
probabilities of the means exceeding falling below any
given value. The probability of their differences falling
below or above zero give the probability that the meanT
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of the first group is higher or lower than the mean of the
second group.

Compared with the frequentist tests, additional infor-
mation is obtained: where a frequentist test that fails to
reject the null hypothesis provides no further informa-
tion on the hypotheses at hand, the Bayesian alternative
indicates which hypothesis can be considered more likely
given the observed data. The Bayesian framework is
more flexible than the frequentist approach for handling
complications that arise, for example, from additional
information such as regression predictors or complica-
tions such as censored or truncated data (21).

A full Bayes approach through Markov Chain Monte
Carlo (MCMC) simulation was adopted to calibrate the
paired Wilcoxon sign test model parameters. No U-Turn

sampling (NUTS) steps were adopted in the analysis.
The NUTS is based on the Hamiltonian Monte Carlo
(HMC) that avoids the random walk behavior, which
has a greater advantage over convergence during sam-
pling compared with other sampling techniques, such as
Metropolis (23, 24). This approach requires assigning the
prior distribution to each parameter in the model. Note
that non-informative priors were specified in this analy-
sis. Assigning the non-informative priors to model para-
meters is a common practice in Bayesian modeling,
especially in the absence of informative priors (25). The
non-informative priors impose minimal influence over
the estimates and allow the data characteristics to domi-
nate instead (26). The uniformly distributed priors were
used for the mean and variance, which depends on the

Table 2. Analysis Period

Year

Spring Fall

Before DST After Before DST After

1983 4/17–4/23 4/24 4/24–4/30 10/23–10/29 10/30 10/30–11/5
1984 4/22–4/28 4/29 4/29–5/5 10/21–10/27 10/28 10/28–11/3
1985 4/21–4/27 4/28 4/28–5/4 10/20–10/26 10/27 10/27–11/2
1986 4/20–4/26 4/27 4/27–5/3 10/19–10/25 10/26 10/26–11/1
1987 3/29–4/4 4/5 4/5–4/11 10/18–10/25 10/25 10/25–10/31
1988 3/27–4/2 4/3 4/3–4/9 10/23–10/29 10/30 10/30–11/5
1989 3/26–4/1 4/2 4/2–4/8 10/22–10/28 10/29 10/29–11/4
1990 3/25–3/31 4/1 4/1–4/7 10/21–10/27 10/28 10/28–11/3
1991 3/31–4/6 4/7 4/7–4/13 10/20–10/26 10/27 10/27–11/2
1992 3/29–4/4 4/5 4/5–4/11 10/18–10/24 10/25 10/25–10/31
1993 3/28–4/3 4/4 4/4–4/10 10/24–10/30 10/31 10/31–11/6
1994 3/27–4/2 4/3 4/3–4/9 10/23–10/29 10/30 10/30–11/5
1995 3/26–4/1 4/2 4/2–4/8 10/22–10/28 10/29 10/29–11/4
1996 3/31–4/6 4/7 4/7–4/13 10/20–10/26 10/27 10/27–11/2
1997 3/30–4/5 4/6 4/6–4/12 10/19–10/25 10/26 10/26–11/1
1998 3/29–4/4 4/5 4/5–4/11 10/18–10/24 10/25 10/25–10/31
1999 3/28–4/3 4/4 4/4–4/10 10/24–10/30 10/31 10/31–11/6
2000 3/26–4/1 4/2 4/2–4/8 10/22–10/28 10/29 10/29–11/4
2001 3/25–3/31 4/1 4/1–4/7 10/21–10/27 10/28 10/28–11/3
2002 3/31–4/6 4/7 4/7–4/13 10/20–10/26 10/27 10/27–11/2
2003 3/30–4/5 4/6 4/6–4/12 10/19–10/25 10/26 10/26–11/1
2004 3/28–4/3 4/4 4/4–4/10 10/24–10/30 10/31 10/31–11/6
2005 3/27–4/2 4/3 4/3–4/9 10/23–10/29 10/30 10/30–11/5
2006 3/26–4/1 4/2 4/2–4/8 10/22–10/28 10/29 10/29–11/4
2007 3/4–3/10 3/11 3/11–3/17 10/28–11/3 11/4 11/4–11/10
2008 3/2–3/8 3/9 3/9–3/15 10/26–11/1 11/2 11/2–11/8
2009 3/1–3/7 3/8 3/8–3/14 10/25–10/31 11/1 11/1–11/7
2010 3/7–3/13 3/14 3/14–3/20 10/31–11/6 11/7 11/7–11/13
2011 3/6–3/12 3/13 3/13–3/19 10/30–11/5 11/6 11/6–11/12
2012 3/4–3/10 3/11 3/11–3/17 10/28–11/3 11/4 11/4–11/10
2013 3/3/2013 3/10 3/10–3/16 10/27–11/2 11/3 11/3–11/9
2014 3/2/2014 3/9 3/9–3/15 10/26–11/1 11/2 11/2–11/8
2015 3/1–3/7 3/8 3/8–3/14 10/25–10/31 11/1 11/1–11/7
2016 3/6–3/12 3/13 3/13–3/19 10/30–11/5 11/6 11/6–11/12
2017 3/5–3/11 3/12 3/12–3/18 10/29–11/4 11/5 11/5–11/11
2018 3/4–3/10 3/11 3/11–3/17 10/28–11/3 11/4 11/4–11/10
2019 3/3–3/9 3/10 3/10–3/16 10/27–11/2 11/3 11/3–11/9

Note: DST = daylight saving time.
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ordering of the observations in the before and after DST
data.

As with Bayesian estimation, the convergence of the
MCMC simulations was assessed using the Gelman-
Rubin Diagnostic statistic. A visual diagnostics approach
was used to assess the convergence of the chains, includ-
ing the use of the autocorrelation plot and the trace plot
of each parameter. A total of 10,000 iterations, including
5,000 for a warm-up and 5,000 for inference, were suffi-
cient to produce the desirable Gelman–Rubin statistic,
which shows that the convergence has been reached.

Results and Discussion

Tables 3 and 4 show the percentage difference in the
mean of crashes before and after the clock change into
and out of DST. Overall, there seems to be a slight
change in crash frequency before and after DST. The
tables show that the percentage differences in the night-
time off-peak hours crashes that occurred before and
after DST are the highest. Specifically, the percentage
differences in the spring are positive, implying that the
average number of crashes that occurred after the switch
to DST is higher than those that occurred before DST.
Contrastingly, the percentage differences of nighttime
off-peak hour crashes in the fall are negative, implying

that the average number of crashes after the end of DST
is lower than those before DST. From Table 3, it can
also be inferred that the average number of morning
peak hours crashes are lower following the beginning of
DST in the spring; Sunday and Monday had the highest
percentage differences.

On the other hand, the percentage differences in the
morning peak hours crashes in Table 4 are positive on
Sunday to Wednesday, indicating that the average num-
ber of morning peak hours crashes following the end of
DST in fall is higher. The average number of multiple-
vehicle crashes was higher both after the switch to DST
in spring and the switch back to ST in fall, particularly
from Sunday to Wednesday. A similar pattern was
observed for injury-related crashes. There was a higher
average number of fatal crashes following the beginning
of DST in the spring, specifically from Sunday to Friday.

Tables 5 to 7 present the Bayesian hypothesis testing
findings for the three main crash categories considered in
the study, that is, crash severity, time of day, and the
number of vehicles involved in a crash. The mean value
is the average of the difference in means of the quantile-
rank transformed data of crashes before and after the
beginning of DST in spring and before and after the end
of DST in fall. In addition to the mean value, the lower
and upper bound limit values of the quantile-rank

Table 3. Percentage Difference of Before and After Mean Values for Crash Categories in the Spring

Day

Type of crash

All No injury Injury Fatal

Morning

peak hours

Afternoon

off-peak hours

Afternoon

peak hours

Nighttime

off-peak hours

Single-

vehicle

Two-

vehicle

Multiple-

vehicle

Sunday 1.37 1.09 1.82 3.23 211.07 23.47 3.48 22.37 1.07 1.98 6.32

Monday 20.50 21.22 0.73 6.79 210.20 21.17 20.51 22.52 5.06 21.97 4.02

Tuesday 2.21 0.41 5.40 13.73 25.25 1.42 0.94 15.24 9.65 0.99 6.59

Wednesday 1.73 1.60 1.92 3.55 28.65 21.03 3.68 13.70 0.65 1.92 0.43

Thursday 20.56 20.04 21.66 6.88 28.65 20.61 21.45 12.56 23.02 0.42 20.53

Friday 20.52 20.17 21.29 8.26 29.16 0.47 24.03 7.68 1.01 20.20 23.77

Saturday 1.19 2.09 0.26 215.32 25.71 20.79 21.10 10.98 0.02 2.20 22.97

Table 4. Percentage Difference of Before and After Mean Values for Crash Categories in the Fall

Day

Type of crash

All No injury Injury Fatal

Morning

peak hours

Afternoon

off-peak hours

Afternoon

peak hours

Nighttime

off-peak hours

Single-

vehicle

Two-

vehicle

Multiple-

vehicle

Sunday 4.16 4.20 4.42 27.79 17.47 7.99 4.75 212.71 1.56 4.10 8.51

Monday 3.92 4.17 4.38 4.76 10.96 6.88 4.78 211.19 0.23 4.16 7.96

Tuesday 1.40 0.48 3.21 29.76 2.14 7.32 2.21 28.56 21.97 0.82 11.30

Wednesday 21.09 22.22 0.95 0.12 2.20 20.63 0.83 210.89 21.19 21.38 0.00

Thursday 0.71 20.63 1.31 23.60 21.50 20.25 5.92 211.16 27.32 0.23 1.10

Friday 23.76 24.57 22.19 212.77 26.79 23.14 20.41 28.91 23.05 24.19 23.45

Saturday 20.87 22.01 0.81 3.80 7.82 24.68 6.18 28.68 2.05 22.41 20.32
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transformed values were also provided in the table. Note
that a 90% HDI credible interval was used in this study.
The variable is considered significant at the 90% HDI
when the values of the 5% and 95% percentiles do not
include zero (0), that is, they are both negative or posi-
tive. The three tables also provide the probabilities of the
median of the crash count after DST being lower or
higher than the crash count before. The following sec-
tions discuss in detail the findings in the three tables.

Crash Type by Severity

Overall, as indicated in Table 5, the probability of the
median of all crashes was lower following the beginning
of DST in the spring. A previous study also observed no
significant increase in crashes in the spring (13).
Conversely, the median of all crashes after DST in the
fall was more likely to be higher than before. The highest
and lowest probabilities were on Sunday (0.995) and the

following Saturday (0.702), respectively. The findings
revealed that only the results for Sunday and Monday
during the fall were significant for the all crashes cate-
gory. This finding implies that there was a significant
increase in all crashes on the Sunday of the fall shift from
DST and Monday immediately following the fall shift
from DST. A similar pattern was observed in the results
for the no injury crash category. Previous research
observed a significant increase in crashes on the Sunday
of the fall shift from DST (18). Similar to the findings of
the earlier study (18), no significant changes were
observed for the other days of the week following the
beginning and end of DST (18).

For the injury crash category, results for Tuesday in
the spring and Sunday in the fall were significant at the
90% HDI credible interval. The mean values of both
days are positive, implying that a higher median value of
injury crashes was observed after the DST change in the
spring and the fall. Overall, the median of fatal crashes

Table 5. Bayesian Hypothesis Testing Results for Crash Type by Severity

Day

Spring Fall

Mean HDIlo HDIup %\comp %.comp Mean HDIlo HDIup %\comp %.comp

All crashes
Sunday 20.062 20.204 0.089 0.756 0.244 0.259 0.097 0.423 0.005 0.995
Monday 20.065 20.261 0.129 0.717 0.283 0.249 0.075 0.425 0.011 0.989
Tuesday 0.130 20.006 0.276 0.065 0.935 0.107 20.068 0.276 0.152 0.848
Wednesday 0.060 20.078 0.198 0.239 0.761 0.113 20.033 0.261 0.106 0.894
Thursday 20.012 20.143 0.126 0.562 0.438 0.104 20.048 0.259 0.129 0.871
Friday 20.114 20.281 0.054 0.870 0.130 0.067 20.118 0.254 0.276 0.724
Saturday 20.017 20.175 0.129 0.571 0.429 0.063 20.132 0.262 0.298 0.702

No injury crashes
Sunday 20.089 20.236 0.053 0.845 0.155 0.223 0.081 0.369 0.006 0.994
Monday 20.047 20.189 0.095 0.709 0.291 0.261 0.116 0.406 0.002 0.998
Tuesday 0.011 20.117 0.148 0.441 0.559 0.050 20.086 0.179 0.267 0.733
Wednesday 0.033 20.103 0.163 0.342 0.658 0.077 20.058 0.205 0.169 0.831
Thursday 20.038 20.168 0.093 0.685 0.315 0.028 20.114 0.16 0.37 0.63
Friday 20.049 20.188 0.081 0.728 0.272 0.088 20.068 0.245 0.174 0.826
Saturday 0.074 20.060 0.213 0.185 0.815 0.029 20.143 0.200 0.386 0.614

Injury crashes
Sunday 20.002 20.204 0.196 0.505 0.495 0.192 0.017 0.364 0.034 0.966
Monday 0.009 20.204 0.225 0.471 0.529 0.200 20.008 0.421 0.062 0.938
Tuesday 0.231 0.085 0.380 0.006 0.994 0.140 20.062 0.335 0.121 0.879
Wednesday 0.064 20.094 0.227 0.256 0.744 0.089 20.099 0.271 0.212 0.788
Thursday 20.043 20.226 0.131 0.656 0.344 0.163 20.027 0.353 0.079 0.921
Friday 20.142 20.368 0.064 0.865 0.135 20.013 20.195 0.159 0.547 0.453
Saturday 0.086 20.297 0.136 0.744 0.256 0.067 20.145 0.285 0.304 0.696

Fatal crashes
Sunday 0.239 20.082 0.577 0.116 0.884 20.128 20.450 0.178 0.754 0.246
Monday 0.092 20.186 0.366 0.292 0.708 0.047 20.274 0.363 0.404 0.596
Tuesday 0.280 20.060 0.605 0.083 0.917 20.140 20.456 0.176 0.771 0.229
Wednesday 0.077 20.256 0.420 0.350 0.650 0.038 20.273 0.361 0.420 0.58
Thursday 0.083 20.303 0.482 0.364 0.636 0.339 0.006 0.668 0.046 0.954
Friday 0.089 20.217 0.372 0.305 0.695 20.317 20.615 20.024 0.961 0.039
Saturday 20.333 20.646 20.021 0.959 0.041 0.074 20.273 0.419 0.364 0.636

Note: HDI = highest density interval; HDIlo and HDIup are the limits of a 90% HDI credible interval; %\comp and %.comp are the probabilities of the

respective parameter being lower or higher than 0. Bolded parameters are significant at the 90% HDI credible interval.
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being higher after the DST change in the spring was
more likely for all the days of the week except Saturday.
Several studies observed a similar finding (15, 16, 18).
Previous research associated the increase in the number
of fatal crashes in the spring with the loss of the hour of
sleep (15, 16, 18).

Crash Type by Time of Day

As indicated in Table 6, mean parameters for Sunday,
Monday, and Saturday for both the spring and the fall
shifts during the morning peak hours were significant.
However, the signs of the mean parameters for the spring
and the fall shifts were opposite. The mean values for the
spring shift were negative for all three days implying that
the median value of crashes during the morning peak
hours after the spring DST shift is more likely to be lower
than before the shift.

On the other hand, the median values of morning
peak hours crashes after the fall shift from DST were
more likely to be higher than before. A similar finding
was observed for the results of the afternoon off-peak
hours crash category.

Overall, the median of the afternoon peak hours crash
frequency after the spring shift to DST and the fall shift
from DST were more likely to be lower before the shift.
Huang and Levinson (13) associated DST with reduced
crash frequency in daytime. Another study observed a
decrease in crashes with increasing daylight in the morn-
ing period, while the crashes increased with increasing
daylight during the evening peak hours (5).

The findings for the nighttime off-peak hour crashes
were significant for Sunday to Wednesday and Saturday
in the spring and Sunday, Monday, and Thursday to
Saturday in the fall. The mean parameters for all days of
the week in the spring were positive, implying an increase

Table 6. Bayesian Hypothesis Testing Results for Crashes by Time of Day

Day

Spring Fall

Mean HDIlo HDIup %\comp %.comp Mean HDIlo HDIup %\comp %.comp

Morning peak hours crashes
Sunday 20.266 20.488 20.056 0.976 0.024 0.290 0.073 0.501 0.014 0.986
Monday 20.247 20.403 20.090 0.994 0.006 0.302 0.105 0.494 0.006 0.994
Tuesday 20.067 20.224 0.093 0.758 0.242 0.123 20.050 0.285 0.111 0.889
Wednesday 20.103 20.259 0.062 0.856 0.144 0.097 20.059 0.247 0.144 0.856
Thursday 20.105 20.236 0.029 0.902 0.098 0.010 20.169 0.186 0.459 0.541
Friday 20.132 20.317 0.056 0.881 0.119 20.006 20.191 0.173 0.525 0.475
Saturday 20.210 20.377 20.046 0.981 0.019 0.256 0.063 0.453 0.016 0.984

Afternoon off-peak hours crashes
Sunday 20.183 20.357 20.001 0.954 0.046 0.312 0.172 0.456 0.000 1.000
Monday 20.137 20.314 0.047 0.895 0.105 0.283 0.078 0.471 0.010 0.990
Tuesday 0.057 20.103 0.218 0.277 0.723 0.235 0.072 0.393 0.011 0.989
Wednesday 20.061 20.210 0.086 0.759 0.241 0.143 20.026 0.312 0.081 0.919
Thursday 0.015 20.168 0.202 0.446 0.554 0.098 20.071 0.270 0.169 0.831
Friday 20.077 20.282 0.113 0.741 0.259 0.029 20.135 0.198 0.387 0.613
Saturday 20.057 20.219 0.112 0.714 0.286 20.137 20.356 0.101 0.840 0.160

Afternoon peak hours crashes
Sunday 20.054 20.213 0.097 0.718 0.282 20.055 20.209 0.102 0.720 0.280
Monday 20.057 20.291 0.173 0.658 0.342 20.054 20.282 0.176 0.654 0.346
Tuesday 0.111 20.072 0.289 0.153 0.847 0.109 20.078 0.286 0.159 0.841
Wednesday 0.028 20.119 0.170 0.372 0.628 0.028 20.118 0.173 0.379 0.621
Thursday 20.066 20.222 0.091 0.757 0.243 20.065 20.221 0.092 0.754 0.246
Friday 20.214 20.382 20.046 0.981 0.019 20.215 20.382 20.046 0.982 0.018
Saturday 20.055 20.263 0.149 0.671 0.329 20.055 20.261 0.154 0.674 0.326

Nighttime off-peak hours crashes
Sunday 0.501 0.314 0.687 0.000 1.000 20.319 20.533 20.105 0.991 0.009
Monday 0.446 0.176 0.718 0.004 0.996 20.324 20.580 20.064 0.980 0.020
Tuesday 0.380 0.125 0.642 0.008 0.992 20.093 20.283 0.106 0.789 0.211
Wednesday 0.284 0.013 0.554 0.042 0.958 20.135 20.328 0.053 0.882 0.100
Thursday 0.166 20.054 0.393 0.110 0.890 20.254 20.472 20.039 0.973 0.027
Friday 0.216 20.014 0.445 0.062 0.938 20.345 20.539 20.149 0.998 0.002
Saturday 0.294 0.084 0.510 0.012 0.988 20.425 20.680 20.174 0.996 0.004

Note: HDI = highest density interval; HDIlo and HDIup are the limits of a 90% HDI credible interval; %\comp and %.comp are the probabilities of the

respective parameter being lower or higher than 0. Bolded parameters are significant at the 90% HDI credible interval.
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in the median nighttime off-peak hour following the
spring shift to DST. By contrast, the mean parameter
coefficients for all days in the fall were negative. From
these findings, it can be deduced that DST is associated
with an increase in crashes in the spring and a decrease
in crashes in the fall.

Crash Type by Number of Vehicles

Table 7 provides the estimation results for the single-
vehicle, two-vehicle, and multiple-vehicle crashes. As
indicated in the table, there was no significant difference
in the number of single-vehicle crashes between the week
before and after the fall shift from DST. With the excep-
tion of Tuesday, the findings for the rest of the days in
the spring were also insignificant. The mean parameter
for Tuesday in the spring was positive, suggesting DST is
associated with an increase in single-vehicle crashes. The
lack of sufficient sleep may explain the increasing fre-
quency of single-vehicle crashes following the beginning
of DST.

There was no significant difference between the week
before and after DST for the two-vehicle crashes follow-
ing the spring shift to DST. A significant increase in the
number of two-vehicle crashes was observed on Sunday

and Monday following the fall shift from DST. The rest
of the days did not have a significant difference. The
findings for multiple-vehicle crashes were significant on
Friday following the DST shift in the spring. On the
other hand, the results for Sunday, Monday, Tuesday,
and Thursday in the fall were positive and significant at
the 90% HDI credible interval. Based on this finding, it
can be concluded that the frequency of multiple-vehicle
crashes increases significantly in the immediate week
after the end of DST in the fall.

Conclusions

Insufficient sleep and disruption of the circadian rhythm
are among the factors affecting drivers’ ability to use
roadways safely. DST is one of the events that disrupt
people’s sleeping cycles and has thus been associated
with immediate changes in crash frequency. Previous
studies have shown mixed results on the impact of DST
on traffic safety. This study explored the effect of clock
changing, following the beginning and end of DST, on
crashes in Florida. The study was implemented using
37 years of Florida state crash data from 1983 to 2019.
This was the first study to use such a large data set to
study the relationship between DST and safety. Crash

Table 7. Bayesian Hypothesis Testing Results for Crashes by Number of Vehicles

Day

Spring Fall

Mean HDIlo HDIup %\comp %.comp Mean HDIlo HDIup %\comp %.comp

Single-vehicle crashes
Sunday 20.022 20.213 0.163 0.578 0.422 0.121 20.063 0.308 0.140 0.860
Monday 0.060 20.122 0.249 0.290 0.710 20.017 20.258 0.229 0.544 0.456
Tuesday 0.289 0.100 0.475 0.007 0.993 20.110 20.359 0.120 0.781 0.219
Wednesday 20.070 20.269 0.131 0.721 0.279 20.014 20.190 0.160 0.555 0.445
Thursday 20.056 20.236 0.113 0.707 0.293 20.094 20.286 0.094 0.793 0.207
Friday 0.094 20.088 0.271 0.193 0.807 0.090 20.095 0.276 0.210 0.790
Saturday 20.098 20.281 0.087 0.813 0.187 0.164 20.056 0.380 0.108 0.892

Two-vehicle crashes
Sunday 20.032 20.193 0.127 0.634 0.366 0.245 0.077 0.411 0.010 0.990
Monday 20.105 20.271 0.077 0.843 0.157 0.233 0.063 0.395 0.012 0.988
Tuesday 0.078 20.065 0.221 0.184 0.816 0.134 20.016 0.283 0.070 0.930
Wednesday 0.016 20.118 0.148 0.422 0.578 0.112 20.023 0.247 0.086 0.914
Thursday 0.010 20.119 0.141 0.449 0.551 0.049 20.101 0.203 0.297 0.703
Friday 20.105 20.280 0.069 0.839 0.161 0.076 20.094 0.252 0.233 0.767
Saturday 20.034 20.187 0.110 0.649 0.351 20.075 20.245 0.086 0.770 0.230

Multiple-vehicle crashes
Sunday 20.054 20.204 0.104 0.721 0.279 0.221 0.010 0.446 0.048 0.952
Monday 20.054 20.299 0.167 0.653 0.347 0.231 0.017 0.449 0.039 0.961
Tuesday 0.109 20.069 0.294 0.161 0.839 0.276 0.073 0.476 0.014 0.986
Wednesday 0.028 20.116 0.176 0.370 0.630 0.142 20.041 0.324 0.100 0.900
Thursday 20.065 20.225 0.089 0.757 0.243 0.211 0.037 0.385 0.025 0.975
Friday 20.215 20.382 20.047 0.982 0.018 20.065 20.274 0.144 0.697 0.303
Saturday 20.055 20.269 0.147 0.673 0.327 20.051 20.328 0.231 0.624 0.376

Note: HDI = highest density interval; HDIlo and HDIup are the limits of a 90% HDI credible interval; %\comp and %.comp are the probabilities of the

respective parameter being lower or higher than 0. Bolded parameters are significant at the 90% HDI credible interval.

Molina et al 9



data for one week before and after the change of clock
were collected. This procedure was implemented during
the beginning of DST in the spring and the end of DST
in the fall.

The paired Wilcoxon rank test implemented using a
Bayesian approach was used to compare the difference
in crash frequency following the shift of the clock to
DST. This nonparametric approach was used because
the study data are not normally distributed. Crashes
were grouped based on injury severity, that is, no injury,
injury, and fatal crashes; number of vehicles involved in
a crash, that is, single-vehicle, two-vehicle, and multiple-
vehicle crashes; and time of day, that is, morning peak
hours, afternoon off-peak hours, evening peak hours,
and nighttime off-peak hours. A total of 154 crash cate-
gories based on different days of the week, crash types,
seasons (spring and fall) were tested.

The results indicated a significant correlation between
DST and traffic crashes. There was a significant increase
in all crashes on the Sunday of the fall shift from DST
and the Monday immediately following. No significant
changes were observed for the remaining days in the fall
and all days in the spring. Overall, a higher frequency of
fatal crashes was observed in the spring following the
shift to DST. Contrary to the findings of previous stud-
ies, a significant decrease and increase in crashes during
morning peak hours in the spring and fall were observed,
respectively. While fewer afternoon off-peak hours
crashes were observed in the spring, there was a signifi-
cant increase in the same crash type in the fall. Nighttime
off-peak hours crashes increased significantly in the first
week of spring following the beginning of DST and
decreased in the fall. The frequency of crashes during
evening peak hours decreased in the week immediately
following the beginning and end of DST. Overall, for
most scenarios considered in the study, the impact of
DST was more significant on a Sunday when the shift
occurred and the following two days after the change,
that is, Monday and Tuesday.

The findings from a majority of previous studies sug-
gested that the sleep loss associated with the spring
shift to DST results in a short-term increase in fre-
quency and severity of crashes, while the fall shift has
little effect. This research concluded that, in addition to
affecting the frequency of crashes in spring, a signifi-
cant increase in crash counts was observed following
the shift from DST. These findings may imply that the
correlation between DST and traffic safety is mainly
because of the sleep pattern disruption and not the one-
hour loss in spring and one-hour gain in fall. The study
findings can assist transportation agencies, researchers,
and practitioners in understanding the impacts of DST
on traffic safety.
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